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Abstract

Fluxes between carbon reservoirs on Earth are central for understanding
the global carbon cycle. The goal of the NASA Carbon Monitoring Sys-
tem (CMS) Flux Pilot Project is to utilize the full suite of NASA data,
models, and assimilation capabilities for attributing changes in the atmo-
spheric accumulation of carbon dioxide to spatially resolved fluxes. For the
oceanic part of this project, we introduce “ECCO2-Darwin”, a new ocean
biogeochemistry general circulation model based on combining the following
pre-existing components: (i) a full-depth, eddying, global-ocean configura-
tion of the Massachusetts Institute of Technology general circulation model
(MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from
the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2)
project, (iii) the MIT ecosystem model “Darwin”, and (iv) a marine carbon
chemistry model. Initializing a global, eddying biogeochemical ocean general
circulation model like ECCO2-Darwin poses major challenges due to compu-
tational constraints and to model drifts. Here, we present a proof-of-concept
study that applies a Green’s functions approach to optimize modeled air-sea
CO2 fluxes by adjusting initial conditions and air-sea gas exchange coeffi-
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cients. We use observations of carbon dioxide partial pressure (pCO2) for
2009–2010, global air-sea CO2 flux estimates, and the seasonal cycle of the
Takahashi et al. (2009) climatology to constrain the model and to obtain
initial fields of dissolved inorganic carbon, alkalinity, and oxygen that allow
us to improve estimates of air-sea carbon fluxes at high spatial and temporal
resolution. We have performed a variety of sensitivity experiments starting
from different initial conditions, as well as experiments that perturb air-sea
gas exchange parameters and the ratio of particulate inorganic to organic
carbon. The Green’s functions approach yields a linear combination of these
sensitivity experiments, which minimizes the model-data differences; it is a
first step towards a more realistic representation of the ocean carbon cycle
by the ECCO2-Darwin model. Comparisons with observations help identify
critical regions for improvement, for instance, regions of overly strong carbon
uptake in the Southern Ocean and weak outgassing the Equatorial Pacific.

Keywords:
Carbon Monitoring System, ocean biogeochemical circulation model,
Green’s function, data assimilation

1. Introduction1

The components of the global carbon cycle interact through fluxes be-2

tween the carbon reservoirs on our planet: atmosphere, land, oceans, and the3

geosphere. Understanding the exchange processes between these reservoirs4

requires knowledge about these fluxes. As there is no global scale observation5

network in place that could provide these flux estimates, we need to combine6

existing observations with models to compute them indirectly. To achieve7

the most realistic results, models can be constrained by observational data,8

especially global space-based observations that provide information about9

the physical and biological state of the land, atmosphere or ocean.10

The goal of the NASA Carbon Monitoring System (CMS) Flux Pilot11

Project is to incorporate the full suite of NASA data, models, and assimi-12

lation capabilities to attribute changes in the atmospheric accumulation of13

carbon dioxide to spatially resolved fluxes 1. The oceanic component of these14

fluxes is of critical importance as it is estimated that the oceans have ab-15

sorbed 48 ± 9% of the anthropogenic CO2 emitted during 1880–1994, that is,16

1compare http://carbon.nasa.gov and http://cmsflux.jpl.nasa.gov/
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since the beginning of the industrial period (Sabine et al., 2004). The current17

oceanic CO2 uptake is estimated to about a quarter of the anthropogenic18

emissions (Le Quéré et al., 2010). The ECCO2-Darwin model, described19

herein, along with the NASA Ocean Biogeochemical Model (NOBM; Gregg20

and Casey, 2007), provides spatially resolved oceanic CO2 fluxes constrained21

by observations of the physical ocean and ship-based CO2 measurements22

for the CMS project. These fluxes are calculated for the period 2009–2010,23

the time frame for which GOSAT (Kuze et al., 2009) atmospheric xCO2 (dry24

mole air fraction of CO2) measurements are available. The ocean fluxes serve25

as a priori surface forcing for the “top-down” atmospheric flux estimates in26

the CMS project.27

Although the flux of CO2 across the air-sea interface cannot be measured28

directly, its magnitude is known to depend on the difference (∆pCO2) be-29

tween the partial pressures of CO2 of the ocean (pCO2) and of the atmosphere30

(pCOatm
2 ). The air-sea CO2 flux for a given ∆pCO2 is usually estimated us-31

ing a parameterization where the gas exchange coefficients depend on wind32

speed at the surface of the ocean (e.g., Wanninkhof, 1992; Takahashi et al.,33

2002; Sarmiento and Gruber, 2006).34

Oceanic pCO2 depends on temperature and on other components of the35

oceanic carbon system, which in turn depend on ocean circulation and bio-36

logical activity. Observations of pCO2 are based on in-situ measurements and37

have been compiled into large data bases (Takahashi et al., 2002, 2009; Pfeil38

et al., 2012). Takahashi et al. (2002) used 940,000 measurements of surface-39

water pCO2 obtained since the International Geophysical Year of 1956–195940

to compile a gridded climatological monthly distribution of surface pCO2 for41

the reference year 1995, later updated for the year 2000 (Takahashi et al.,42

2009).43

On the basis of the available measurements numerous efforts have been44

undertaken to quantify the oceanic uptake of CO2 and its spatial structure45

(e.g., Keeling et al., 1996; Battle et al., 2000; Takahashi et al., 2002, 2009),46

its temporal variability, and the magnitude of its anthropogenic component47

(e.g., Gloor et al., 2003; McNeil et al., 2003; Sabine et al., 2004).48

Other approaches to quantify air-sea CO2 fluxes are based on atmospheric49

CO2 mixing ratios (e.g., Conway et al., 1994, and many others) and transport50

inversions (e.g., Bousquet et al., 2000; Gurney et al., 2002; Rödenbeck et al.,51

2003; Baker et al., 2006), which “estimate the regional distribution of air-52

surface CO2 fluxes using the spatiotemporal variability in atmospheric CO253

concentration measurements” (Le Quéré et al., 2009). With regard to the54
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oceans the results of these studies are difficult to interpret as the oceanic55

signal variability is small compared to terrestrial fluxes. Nevertheless, they56

provide estimates independent from gas exchange parameterizations.57

Another air-sea-CO2-flux estimation method that does not require knowl-58

edge of a gas exchange coefficient is based on inverse calculations of oceanic59

transports using ocean-interior data of dissolved inorganic carbon (DIC) and60

on ocean circulation models (Gloor et al., 2003; Mikaloff Fletcher et al., 2006,61

2007; Gruber et al., 2009). While this method allows a certain (coarse) re-62

gionalization of model results, it only yields long-term CO2 fluxes without63

temporal variability.64

Numerous biogeochemical ocean forward models have been developed65

(Aumont and Bopp, 2006; Le Quéré et al., 2007; Thomas et al., 2008; Doney66

et al., 2009; Buitenhuis et al., 2010; Assmann et al., 2010; Galbraith et al.,67

2010, to name a few recent ones). These models differ substantially in resolu-68

tion as well as in the formulation of model physics, biology, and the compo-69

nents of the carbon cycle, depending on the questions they intend to answer.70

In light of societal interest in anthropogenic changes of carbon sources and71

sinks, substantial effort went into improving these models to address recent72

changes of oceanic carbon uptake (e.g., Le Quéré et al., 2007, 2009, 2010;73

Lenton et al., 2012) and possible future development and feedback under74

climate change scenarios (e.g., Roy et al., 2011; Séférian et al., 2012).75

For the specific task of developing a Carbon Monitoring System, the re-76

quirement of an ocean component that represents the current state of the77

oceans as realistically as possible leads to following two criteria. First, to cap-78

ture the fine scale structure of sources and sinks and their temporal changes79

in certain regions it is desirable to have a resolution that is at least eddy-80

permitting. The North Atlantic is an example for a region exhibiting such81

high variability on both temporal and spatial scales (compare, for instance,82

Fig. 3 in Le Quéré et al., 2009). Second, observational data should be incor-83

porated into the model simulations to the highest degree possible. In order to84

address these two requirements, we developed the ECCO2-Darwin model (as85

described later in this paper), which combines eddying horizontal resolution86

with state-of-the-art biogeochemistry and data assimilation capability.87

When setting up an Ocean Biogeochemistry General Circulation Model88

(OBGCM) with this type of specifications, one of the most difficult tasks89

is to account for complications resulting from high computational cost. In90

the ocean, where circulation is slow compared to the atmosphere, it can91

take thousands of (model) years to reach an equilibrium state. As increased92
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spatial resolution requires more computing time, going to higher and higher93

resolution diminishes the ability to spin-up models for a sufficiently long94

time. Adding complexity to models by, for instance, including biogeochemical95

cycles with many tracers, exacerbates the problem, as the model equations96

have to be solved for each additional tracer.97

Another problem associated with long spin-ups is model drift, that is,98

the increasing biases between the model simulation and nature. Although99

initial conditions are traditionally chosen to be as close to nature as possible,100

systematic model or boundary condition errors will cause the simulation to101

drift from a state near the attractor of nature to a state close to the attractor102

of the model (Toth and Peña, 2007). If this model equilibrium state is too103

far from nature, estimates of air-sea fluxes and the underlying physics and104

biogeochemistry that drive these fluxes will be unrealistic, that is, they will105

not or only imperfectly represent the natural phenomena they supposed to106

model.107

For short model integrations that circumvent these drift issues and allow108

high resolution and model complexity, choosing initial conditions becomes109

a critical issue. The availability of oceanic data at any given point in time110

chosen to be the models starting point is extremely limited. While remote111

sensing has improved the data situation drastically, it only supplies data for112

the top layer of the ocean and gives very little information that can be used113

to initialize ocean biogeochemistry.114

To solve this initialization problem for all biogeochemical quantities simul-115

taneously and to avoid producing unrealistic air-sea carbon flux estimates,116

we use a simple, physically-consistent data assimilation approach based on117

model Green’s functions, that is, on forward model sensitivity experiments118

(Menemenlis et al., 2005a). The advantages of this method are simplicity119

of implementation, the possibility of obtaining complete a posteriori error120

statistics for the parameters being estimated, and improved robustness in121

the presence of nonlinearities. One of the trade-offs associated with this122

method is that computational cost increases linearly with the number of123

control parameters (Menemenlis et al., 2005a).124

This study is meant to (i) introduce the ECCO2-Darwin OBGCM, (ii)125

be a proof-of-concept for the application of Green’s functions to the prob-126

lem of initializing high resolution biogeochemical models, and (iii) describe127

some residual problems of the ECCO2-Darwin estimates that need to be128

addressed in future work. We start by introducing the various components129

of the ECCO2-Darwin OBGCM (Section 2). We then describe the initial130
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model simulation (Section 3) and give details about the various sensitivity131

experiments (Section 4). Next we describe the observations used to evaluate132

and adjust the model solution (Section 5). In Sections 6 and 7, we describe133

the data assimilation method and the optimized model realization. Finally134

we evaluate this optimized solution and discuss residual errors in Section 8.135

2. The ECCO2-Darwin Model136

The ECCO2-Darwin Ocean Biogeochemistry General Circulation Model137

is based on a global, eddying, ocean and sea ice configuration of the Mas-138

sachusetts Institute of Technology general circulation model (MITgcm; Mar-139

shall et al., 1997a,b) and on results from two separately funded projects: the140

Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2)141

Project, which provides a data-constrained estimate of the time-evolving142

physical ocean state, and the Darwin Project, which provides time-evolving143

ocean ecosystem variables. Together, ECCO2 and Darwin, supplemented by144

a carbon chemistry component, supply a time-evolving physical, biological,145

and chemical simulation of oceanic carbon biogeochemistry. We developed146

this new OBGCM in order to compute surface fluxes of carbon at high spatial147

and temporal resolution for the NASA CMS Flux Pilot Project.148

2.1. ECCO2149

The ECCO2 global-ocean model configuration uses a cube-sphere grid150

(Adcroft et al., 2004) with 18-km horizontal grid spacing and 50 vertical lev-151

els (Menemenlis et al., 2005b, 2008). It includes a dynamic/thermodynamic152

sea ice model (Losch et al., 2010; Heimbach et al., 2010). In a first step, the153

ECCO2 model configuration was adjusted using a low-dimensional (Green’s154

functions) estimation approach (Menemenlis et al., 2005a). In a second step,155

the method of Lagrange multipliers, also known as the adjoint method (Wun-156

sch and Heimbach, 2007), was used to adjust initial and time-evolving surface157

boundary conditions. Data constraints for the adjoint-method optimization158

include sea level anomaly from altimeters on Jason-1, Jason-2/Ocean Surface159

Topography Mission (OSTM), and Environmental Satellite (Envisat); sea160

surface temperature from the Advanced Microwave Scanning Radiometer-161

EOS (AMSR-E); and temperature and salinity profiles from the Argo profil-162

ing floats. The adjoint-method-based ECCO2 estimates of the global-ocean163

circulation available at the beginning of this study were for year 2004 and164
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for 16 months starting in January 2009. These physical ocean circulation165

estimates were used to drive the Darwin ecosystem model.166

2.2. Darwin and Ocean Chemistry167

The Darwin Project is an initiative to advance the development and ap-168

plication of novel models of marine microbial communities, to identify the169

relationships of individuals and communities to their environment, and to170

connect cellular-scale processes to global microbial community structure (Fol-171

lows et al., 2007; Follows and Dutkiewicz, 2011; Dutkiewicz et al., 2009). The172

particular configuration used for the CMS Flux Pilot Project includes five173

phytoplankton functional types (choices based on results from previous ver-174

sions of the model, see Section 3.1) and two zooplankton types. The carbon175

cycle is explicitly included in this configuration, along with those of nitrogen,176

phosphorus, iron, silica, oxygen, and alkalinity. The carbonate chemistry fol-177

lows the simplified model proposed by Follows et al. (2006) and air-sea CO2178

exchange is parameterized according to Wanninkhof (1992).179

3. VERSION 1: The First ECCO2-Darwin Simulation180

To obtain a first estimate of air-sea carbon fluxes for 2009 and 2010,181

ECCO2-Darwin was integrated using a “best guess” set of initial and bound-182

ary conditions. We will refer to this simulation as “VERSION 1” or “V1”.183

3.1. Initial and Boundary Conditions184

The ECCO2-Darwin model was initialized in January 2004 with physical185

initial conditions provided by the adjoint-method-based solution described186

in Section 2.1. Biogeochemical initial conditions for the spin-up were pro-187

vided by an eight-year integration of Darwin driven by an earlier ECCO2188

solution. The ecosystem model of that simulation was that of Dutkiewicz189

et al. (2009). This earlier ECCO2 simulation did not include carbon chem-190

istry and had been initialized with phosphate, nitrate, and silicate fields191

from the World Ocean Atlas (Garcia et al., 2006b), and all other fields from192

an ECCO-GODAE solution (Dutkiewicz et al., 2009), with the exception of193

iron fields that were provided from MIT’s Integrated Global System Mod-194

eling framework (IGSM; Dutkiewicz et al., 2012) in the Arctic, and ECCO-195

GODAE for the rest of the world. Phyto- and zooplankton biomass were from196

ECCO-GODAE, equally distributed over all types. The initial conditions for197

DIC, alkalinity, and oxygen were taken from a realization of the Community198
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Climate System Model (CCSM-3) ocean Biogeochemical Elemental Cycle199

(BEC) model (Blackmon et al., 2001; Lovenduski et al., 2007; Doney et al.,200

2009) that had been spun up for 600 years to pre-industrial conditions and201

then continued with historical atmospheric CO2 for 1765 through 2004.202

3.2. Model Spin-Up and Experimental Set-Up203

The ECCO2-Darwin model spin-up started January 2004 with two years204

of identical physical atmospheric boundary conditions provided by the 2004205

adjoint-method ECCO2 solution described in Section 2.1. The two year spin-206

up was followed by a “ramp-up” for the years 2004 through 2008. For this207

period the atmospheric boundary conditions were obtained from the Japan208

Meteorological Agency and Central Research Institute of Electric Power In-209

dustry 25-year reanalysis (JRA-25; Onogi et al., 2007).210

The “V1” ECCO2-Darwin simulation, which is described and evaluated211

below, used physical boundary conditions from the ECCO2 adjoint solution212

for the year 2009 and for the first four months of 2010, followed by JRA-25213

forcing for the remainder of 2010. Surface boundary conditions for dust/iron214

deposition were provided by the climatology of Mahowald et al. (2006). At-215

mospheric pCO2 forcing fields were constructed from spatially variable, daily216

atmospheric pCO2 fields from 2009 GEOS-Chem results (Nassar et al., 2010)217

produced as part of the NASA CMS Flux Pilot Project. The spatial and218

temporal anomalies of these fields were adjusted globally using the global219

atmospheric monthly pCO2 means from NOAA’s Earth System Research220

Laboratory2.221

3.3. Results and Evaluation222

One of the most striking features of the simulations with ECCO2-Darwin223

is the high temporal and spatial variability of air-sea CO2 fluxes. The day-to-224

day variability in the mid- and high latitudes is dominated by synoptic scale225

atmospheric systems. An example from this simulation for six consecutive226

days in January 2009 is shown in Fig.1. The air-sea exchange processes227

are dominated by wind speed variability (which is parameterized through228

a quadratic dependence of the air-sea flux on the wind speed, Wanninkhof,229

1992). While the reflection of atmospheric synoptic activity in air-sea gas230

2NOAA’s ESRL data provided through their website at http://www.esrl.noaa.gov/
gmd/ccgg/trends/
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exchange fluxes is not surprising, it is worth pointing out that this high231

variability is lost when using flux climatologies (e.g., Takahashi et al., 2009)232

to drive atmospheric models.233

One method to evaluate the quality of our model calculations is to com-234

pare our globally integrated mean CO2 exchange to published values de-235

rived from other ocean models (for instance in a synthesis like: Global Car-236

bon Project, 2011). There, the global ocean uptake for 2010 is given as237

2.4±0.5 PgCyr−1. Our “VERSION 1” run yields 3.6 PgCyr−1 (compare238

Tab.1). The temporal evolution of this globally integrated flux is shown in239

Fig.2 for 2009 and 2010. The blue circles represent our “V1” run, the thick240

black lines monthly mean values from Takahashi et al. (2009), which are241

referenced to 2000. The annual cycle of global uptake and outgassing can242

be explained by looking at processes in some key regions. As the processes243

shaping the time-series are the same for the other model realizations and244

only differ in magnitudes, we will discuss them later in Section 7.245

With the overall uptake of the ocean in VERSION 1 being clearly too246

strong, we changed our experimental set-up. The results for V1 were made247

publicly available as an intermediate result3.248

4. Sensitivity Experiments249

To improve the air-sea CO2 fluxes from our initial run we performed250

a suite of sensitivity experiments spanning the years 2009 and 2010. The251

physical initial conditions were identical for all runs (and the same as those252

described in Section 3.1). Five runs (CCSM, GLODAP, KS, BLEND, and253

NOBM) varied in their biogeochemical initial conditions and were spun-up254

as described in Section 3.1 starting with the year 2004. Additional sensitiv-255

ity runs varied model parameterizations (runs PISVEL and PICPOC) while256

using the January 2009 biogeochemical fields of the GLODAP integration as257

initial conditions.258

4.1. Run Descriptions259

The initial conditions that distinguish the sensitivity runs were created260

by interpolating the data sets described in the following to ECCO2-Darwin’s261

cube sphere grid. An overview of the parameterizations and initial conditions262

used in the integrations is given in table 1.263

3http://cmsflux.jpl.nasa.gov/
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CCSM run. The CCSM run is basically identical to V1. The only difference264

to V1 lies in the use of two complete years of adjoint forcing for the years265

2009 and 2010 for the CCSM run. The initial conditions for DIC, alkalinity,266

and oxygen were taken from a realization of the Community Climate Sys-267

tem Model (CCSM-3) ocean Biogeochemical Elemental Cycle (BEC) model268

(Lovenduski et al., 2007; Doney et al., 2009). More details can be found in269

the description of run V1 in Section 3.1.270

GLODAP (BASELINE) run. For the GLODAP run the initial conditions for271

DIC and alkalinity were taken from the Global Ocean Data Analysis Project272

(GLODAP) annual mean climatology provided by the Carbon Dioxide In-273

formation Analysis Center (CDIAC; Key et al., 2004). The oxygen values274

were derived from the World Ocean Atlas (WOA; Garcia et al., 2006a) by275

taking the January values where available (that is, for the top 1500m) and276

the annual climatology for the rest of the domain. This model realization277

will also be referred to as “BASELINE” run.278

KS run. Alkalinity and oxygen initial conditions for the KS (Key & Sabine)279

run were identical to the ones used in the GLODAP run. For DIC the280

CDIAC data set was blended with an anthropogenic correction using the data281

set from Sabine et al. (2004). The values for initial conditions for January282

2009 were calculated according to the method described in Le Quéré et al.283

(2010).284

BLEND run. For the BLEND run DIC, alkalinity and oxygen were blended285

from the initial conditions of three other runs: the fields north of 40◦N were286

identical to CCSM, between 35◦N and 15◦N to GLODAP, and south of 10◦N287

to KS. The areas between these regions (from 40◦N to 35◦N and 15◦N to288

10◦N) were linearly interpolated in between the data set. In addition, DIC289

values in Antarctic Bottom Water were increased by 10 µmolkg−1.290

NOBM run. Values for the initial conditions of DIC and dissolved organic291

carbon (DOC) were taken from a realization of the NASA Ocean Biogeo-292

chemical Model (NOBM; Gregg et al., 2003; Gregg and Casey, 2007, 2009)293

provided by Watson Gregg, NASA Goddard Space Flight Center. As this294

model does not carry alkalinity and oxygen, these quantities were initialized295

with the data sets used in the BLEND run.296
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PISVEL run. The PISVEL run was designed to identify the dependency of297

our air-sea CO2 fluxes to their parameterization. To this end we modified the298

air-sea gas exchange piston velocity in the formulation of Wanninkhof (1992)299

from our standard value of 0.337 used in the other runs to the original value300

of 0.31 used by Wanninkhof (1992). This run was started in 2009 using initial301

conditions from the BASELINE run.302

PICPOC runs. The PICPOC runs take into account the dependency of air-303

sea CO2 fluxes on alkalinity. One big driver of alkalinity changes is the304

cycling of particulate inorganic carbon (PIC), which is formed as calcium305

carbonate (CaCO3) in shells in some phytoplankton species and subsequently306

dissolved at depth. The amount of PIC produced by these species relative to307

particulate organic carbon (POC) is the parameter we choose to manipulate308

for the PICPOC+ and PICPOC- experiments from 0.04 in the BASELINE309

run to 0.1 and 0.01, respectively. For an overview of the variability of this310

ratio for a variety of ocean regions see Sarmiento et al. (2002). The PICPOC311

runs were also started in 2009 using initial conditions from the BASELINE312

run.313

Other runs. We performed further sensitivity experiments varying the disso-314

lution rate of PIC and vertical tracer diffusion. As these runs yielded little315

to no effect on air-sea CO2 fluxes or led to inconclusive results we did not316

pursue them further.317

4.2. Results and Evaluation318

Overall, most of our sensitivity experiments reproduced the spatial and319

temporal patterns observed in biogeochemical quantities; amplitudes, either320

globally or with regard to specific regions, were not always well matched. As321

an illustration, the two top rows of Figure 3 show annual means of surface322

DIC from four of our sensitivity runs for 2009. The bottom left shows the323

values from the GLODAP (Global Ocean Data Analysis Project; Key et al.,324

2004) climatology that had been used to initialize our “GLODAP” sensitivity325

experiment (top left of Fig.3). The differences that can be seen between the326

climatology and the model runs can be attributed to a variety of causes.327

First, the initial DIC fields of the model runs differed from each other quite328

substantially and thus led to a variety of patterns and amplitudes while the329

model runs tried to adjust to them. Second, the GLODAP climatology is330

based on measurements taken in the 1990s and does not reflect contemporary331
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DIC fields. It can therefore not be expected that the observational panel in332

Fig.3 would match the model results for 2009. Furthermore, the GLODAP333

DIC climatology does not cover the Arctic Ocean, nor several marginal seas334

represented in our model. For our GLODAP run we therefore created values335

for these areas by extrapolating from nearest neighbors. The errors that336

might have been introduced by this method are reflected in the substantial337

differences between model runs that we see, for instance, in the Arctic Ocean.338

Monthly mean air-sea CO2 fluxes from our model runs are compared to339

each other and the data set by Takahashi et al. (2009) in Fig.4 for July 2009340

and in Fig.5 for January 2010. The strongest discrepancies between model341

and observations exist in the Southern Ocean. Measurements are notoriously342

sparse in this region of the world ocean (especially in winter) and this lack of343

information is reflected in a climatology like that by Takahashi et al. (2009)344

(lower left in Figs.4 and 5). In these graphs the coarse spatial resolution345

of the climatology (5◦-by-4◦) is clearly distinguishable from the high model346

resolution (approximately 18 km, plotted here as 0.25◦) by the absence of347

fine scale structure. The monthly means of the Takahashi et al. (2009) data348

set are referenced to the year 2000, while the model results are shown for349

July 2009 and January 2010. The global uptake of CO2 by the oceans is350

modulated by the increase of atmospheric CO2 concentrations and natural351

and anthropogenic climate variability (e.g., Le Quéré et al., 2009). Due352

to all these factors discrepancies between models and observations are not353

surprising.354

In July 2009 the main differences between the model runs in Fig.4 lie in355

the strength of the outgassing in the equatorial Pacific, the spatial extension356

of the subtropical outgassing in the Northern hemisphere, and the structure357

and size of air-sea gas exchange fluxes south of 30◦S. For January 2010 (Fig.5)358

the model runs all share the strong oceanic carbon uptake in the Southern359

Ocean (contrasted by the weak uptake in the climatology). The differences360

in equatorial upwelling are similar to the July ones. The model runs disagree361

on the structure and magnitude of air-sea carbon fluxes north of 40◦N.362

The globally integrated mean ocean uptake for 2010 of our model sen-363

sitivity runs ranges from 0.62 to 4.18 PgCyr−1 (see Tab.1) compared to364

2.4±0.5 PgCyr−1 (Global Carbon Project, 2011). The red and green circles365

in Fig.2 represent two of our sensitivity runs (GLODAP and NOBM), the366

blue dots our V1 run, and the thick black lines monthly mean values from367

Takahashi et al. (2009) (which are referenced to 2000). A further discussion368

of the spatial patterns and the time-series of air-sea CO2 fluxes and their369
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causes, as well as an evaluation, will be given in Section 7.370

5. pCO2 Data Sets371

In addition to evaluating our results against climatologies (Key et al.,372

2004; Takahashi et al., 2009) and global mean values (Global Carbon Project,373

2011) we also used surface pCO2 data for 2009 and 2010 from the “Global374

Surface pCO2 (LDEO) Database” at the Carbon Dioxide Information Analy-375

sis Center (Takahashi et al., 2011) to evaluate and improve our model results.376

The available data for the time period of our model run are very sparse377

and far from being regularly distributed (Fig.6). We sampled our model378

sensitivity runs at the times and locations of the measurements. The dis-379

tribution and shape of the resulting scatter plots (not shown) indicates that380

there are substantial differences between the data and our model, which can381

be attributed both to model deficiencies as well as undersampling.382

The wide spread of our solutions, mainly due to the choice of initial383

conditions, severely limits the ability to realistically constrain 71% of the384

atmosphere’s lower boundary. To quantify the data-model mismatch and385

determine our “best” solution we calculated a cost function (details see Sec-386

tion 6). The cost is defined as the sum of the quadratic differences between387

observations and model. Values for the costs per observation (J/NOBS) of388

the GLODAP run for this initial scenario were the lowest of the runs with389

variable initial conditions,. We therefore choose this run to be our reference390

or “BASELINE” run for the following investigations.391

6. Optimal Linear Combination392

Recently, two studies have assimilated oceanic pCO2 data into numerical393

models: Valsala and Maksyutov (2010) used an offline tracer transport model394

driven by reanalysis ocean currents, and While et al. (2012) assimilated pCO2395

into a biogeochemical ocean general circulation model. Both studies report396

improvements in representing pCO2 fields. Here we use pCO2 measurements397

to constrain initial conditions and exchange coefficients of a global, eddying398

biogeochemical ocean model in order to improve air-sea CO2 flux estimates.399

6.1. Green’s Function Approach400

The data assimilation approach used in this study is a least squares401

method based on computation of model Green’s functions. This approach402
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has previously been used for atmospheric tracer inversions (Enting and Mans-403

bridge, 1989; Tans et al., 1990; Bousquet et al., 2000), ocean circulation es-404

timates (Stammer and Wunsch, 1996; Menemenlis and Wunsch, 1997; Men-405

emenlis et al., 2005a), ocean carbon inversions (Gloor et al., 2003; Mikaloff406

Fletcher et al., 2006, 2007), joint ocean-atmosphere carbon dioxide inversions407

(Jacobson et al., 2007a,b), and anthropogenic CO2 sequestration estimates408

(Khatiwala et al., 2009).409

The Green’s function approach involves the computation of Ocean Bio-410

geochemistry General Circulation Model (OBGCM) sensitivity experiments411

followed by a recipe for constructing a solution that is the best linear com-412

bination of these sensitivity experiments. Green’s functions are used to lin-413

earize the OBGCM, and discrete inverse theory is used to estimate uncertain414

OBGCM parameters. The following discussion is based on the description in415

Menemenlis et al. (2005a) and uses, when possible, the notation of Ide et al.416

(1997).417

Algebraically, the OBGCM can be represented by a set of rules for time-
stepping a state vector:

xf(ti+1) = Mi

[
xf(ti)

]
. (1)

The OBGCM state vector xf(ti) includes the prognostic variables of the bio-
geochemical model as described in Section 2.2, for instance, DIC, alkalinity,
and oceanic pCO2, on a predefined grid at discrete time ti. Function Mi rep-
resents the known OBGCM time-stepping rules. The discretized dynamics
of the true ocean xt are assumed to differ from that of the numerical model
(1) by a vector of stochastic perturbations:

xt(ti+1) = Mi

[
xt(ti), η

]
, (2)

where η is a noise process, which is assumed to have zero mean and covariance418

matrix Q. Vector η contains a set of uncertain parameters, here initial419

conditions, air-sea gas exchange coefficients, and the PIC/POC ratio, that420

can be used as “controls” for bringing the OBGCM simulation closer to421

observations.422

The optimization problem aims to estimate parameters η given a set of
observations

yo = H




xt(t0)
...

xt(tN)


 + ε, (3)
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where vector yo represents all available observations during the estimation423

period, t0 ≤ ti ≤ tN , H is the measurement function, and residual ε is a424

noise process, which is assumed to have zero mean and covariance matrix425

R. Vector ε represents measurement errors and all model errors that are not426

represented by η in (2).427

For the Green function approach, Eqs. (2) and (3) are combined, resulting
in

yo = G [η] + ε, (4)

where G is composed of the observation operator H with the OBGCM func-
tion Mi. Control parameters η are estimated by minimizing a quadratic cost
function

J = ηT Q−1η + εT R−1ε, (5)

where superscript T is the transpose operator. We assume that (4) can
be linearized about a particular OBGCM trajectory. If the linearization
assumption holds, (4) simplifies to

yd = yo −G [0] = Gη + ε, (6)

where 0 is the null vector, G [0] is the baseline OBGCM integration sampled
at the data locations, vector yd is the model-data difference, and G is a
matrix whose columns are the Green functions of G. Specifically, the j-th
column of matrix G is

g(j) =
G [ej]−G [0]

ej

, (7)

where ej is a perturbation vector that is everywhere zero except for element
j, which is set to ej. That is, each column of G can be computed using an
OBGCM sensitivity experiment. Matrix G is called the data kernel because
it relates the data yd with model parameters η. The minimization of (5)
given (6) is a discrete linear inverse problem with solution

ηa = PGTR−1yd (8)

and uncertainty covariance matrix

P = (Q−1 + GTR−1G)−1. (9)

This approach has been applied to the initialization and adjustment of the428

ECCO2-Darwin model, as is discussed next.429
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6.2. Solution and Linear Combination430

As a first step and proof of concept we started our investigations experi-431

menting with optimizations using a variety of combinations of the data sets432

described in Section 5. We present results from one particular realization to433

illustrate the concept.434

We used the surface pCO2 data for 2009 and 2010 from the “Global Sur-435

face pCO2 (LDEO) Database” at the Carbon Dioxide Information Analysis436

Center (Takahashi et al., 2011) as described in Section 5 for the data vector437

yo in Eq.3 as a first attempt to constrain our model output. The experiments438

with this data set alone showed that we could achieve a modest improvement,439

but that the use of additional data constraints was warranted.440

The Green’s functions run “GREEN” used two other sets of data con-441

straints: The global mean air-sea CO2 flux for 2010 (with a value of 2.4 PgCyr−1,442

Global Carbon Project, 2011) and the Takahashi et al. (2009) climatology443

for the seasonal cycle of pCO2 (after removing area-weighted monthly means444

from the original values).445

6.3. Set-Up for an Optimized Run446

Out of a large number of possible combinations of parameters and runs447

we choose (after experimenting with a variety of settings) those shown in448

Tables 1 and 2. The standard errors for the pCO2 data and climatology were449

set as the RMS error between data and model realizations. The error for the450

global mean air-sea CO2 flux was chosen as 0.01 PgCyr−1.451

For the optimization run GREEN that we discuss here we used a com-452

bination of seven sensitivity runs: All five runs that differed in their initial453

conditions (GLODAP, CCSM, KS, BLEND, and NOBM), the sensitivity454

study involving changed piston velocity (PISVEL), and one of our runs in-455

volving changes in the ratio of PIC and POC (PICPOC+). The cost per456

observation for each of these runs is shown in Tab.2. We choose not to use457

the results from our other sensitivity runs as the associated changes yielded458

little to no effect on air-sea CO2 fluxes.459

The biogeochemical initial conditions (ICs) for our optimized run were460

determined from a linear combination of the ICs from those five runs that461

differed in their initial conditions. The factor for the BASELINE run is the462

sum of all the factors of the runs that used the BASELINE initial conditions463

(GLODAP, PISVEL, and PICPOC), the other four factors come directly464

from the Green’s functions calculation. They are listed for the GREEN run465
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in Tab.2, the parameter values for the gas exchange parameter, and the ratio466

of PIC to POC can be found in Tab.1.467

7. VERSION 2: An Optimized Solution468

The GREEN optimizations yielded substantial cost (that is, data-model469

mismatch) reductions. While the cost per observation of the sensitivity runs470

was between 1.04 and 2.18 depending on the run, the optimized solution471

yielded a cost per observation of 0.82 (Tab.2). A linear combination of the472

values from the sensitivity runs (applying the multiplication factors directly473

to the model output values and fields instead of performing the optimized474

runs) yielded even a slightly lower value. This cost improvement is reflected475

in the scatter plot of Figure 7. While there is still considerable scatter in the476

optimized solution (black dots), compared to the VERSION 1 results (red477

dots) the GREEN solution is closer to the diagonal, as symbolized by the478

scatter plot density contour lines.479

The global mean oceanic CO2 uptake for 2010 that was between 0.62 and480

4.18 PgCyr−1 in the sensitivity runs showed a value of 2.54 PgCyr−1 in481

the optimized run (Tab.1). This is of course not surprising as the error for482

this quantity had been set to 0.01 PgCyr−1 in the optimization calculation483

posing a strong constraint for the solutions.484

The corresponding annual cycles of globally integrated air-sea CO2 fluxes485

for run GREEN are shown as the large black circles in Fig.2. The optimiza-486

tion has led to values that are located between the extremes of the sensitivity487

runs, but show the same overall structure in the seasonal cycle. The regional488

contributions to the seasonal cycle of globally integrated fluxes in Figure 8489

help interpret the seasonal cycle of the overall CO2 uptake and release.490

Strong uptake in the Southern Ocean in the austral spring and summer491

dominates the global budget. The annual cycle there is mainly driven by492

variations in vertical and horizontal transport processes as well as biological493

production. Temperature differences between summer and winter are not494

very pronounced (on average about 4◦C), hence their influence on solubil-495

ity and air-sea fluxes is limited. This globally integrated uptake maximum496

during December and January is intensified by winter-time uptake in the497

mid-latitudes of the northern hemisphere that is only slightly counteracted498

by outgassing in the southern mid-latitudes. The equal phasing between the499

mid-latitudes of the northern hemisphere and the Southern Ocean can also be500

seen in boreal summer/austral winter when the combined (weak) outgassing501
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of these regions more than compensates for the slight uptake of the southern502

hemispheric mid-latitudes. This interplay hence explains the seasonal cycles503

of Fig.2.504

The spatial maps showing the GREEN optimization for surface DIC and505

the monthly mean pCO2 are in the lower right plots of Figs.3, 4, and 5, re-506

spectively. In general, the overall features of the biogeochemical fields look507

realistic. Unrealistic features of single realizations (for instance, the entire508

North Atlantic being a carbon sink in the CCSM run in January 2010) have509

been ameliorated in the optimized runs. The July 2009 CO2 fluxes are in510

closer agreement with the Takahashi et al. (2009) climatology than our Jan-511

uary 2010 results. Features like the strength of the Southern Ocean uptake512

and the almost complete lack of outgassing in the northernmost Pacific are513

certainly characteristics of our solutions that need to be explored in more514

detail.515

Major differences between the regional time-series of our model run and516

the Takahashi et al. (2009) climatology in Figure 8 exist in the Equatorial517

Pacific, the North Atlantic and Pacific, and the Southern Ocean. These are518

reflected in the comparison of the GREEN run’s annual mean CO2 flux map519

with the annual mean Takahashi climatology in Figure 9 and will be discussed520

in the following section.521

The air-sea fluxes from this GREEN run have been published to the522

research community as VERSION 2 (v2.0 and v2.1, differing only in the523

method of interpolation to a lat-lon grid)4.524

8. Summary and conclusions525

It is difficult to asses how realistic our solutions are, as we don’t know526

the “true” state of the ocean and, in particular, of air-sea CO2 fluxes. The527

cost functions can give a rough idea of how much the model-data difference528

was reduced. Still, we are comparing single measurement points that are529

subject to local or small scale phenomena and temporal variations (caused,530

for instance, by eddies) with a global model. The climatologies that we used531

to initialize or constrain our data with have the problem that they are gridded532

interpolations from measurements that have been taken over long time spans533

and often there are large gaps between cruises. Of course, the overall patterns534

4http://cmsflux.jpl.nasa.gov/
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of these climatologies should be represented in model resolutions, and they535

are.536

A different approach to validating the adjusted ECCO2-Darwin simula-537

tion is to compare our results to other studies. Since other studies have538

mostly reported annual mean results, we refer to our annual mean air-sea539

CO2 flux in Fig.9. The ocean inversion study by Gruber et al. (2009) shows540

only slight discrepancies between the ocean inversion estimate of uptake in541

the Southern Ocean (defined as south of 44◦S) and the Takahashi et al. (2009)542

climatology with regard to the overall uptake values, but a very different spa-543

tial structure. In the climatology CO2 is taken up near the continent (very544

weak to neutral in our GREEN run), and released into the atmosphere north545

of the Antarctic Polar Front (strong outgassing in GREEN). The values in546

the ocean inversion for the uptake in that area are approximately between547

0.5 and 3 molCm−2yr−1 (nominal for 1995), our model produces values be-548

tween an outgassing of up to 3 molCm−2yr−1 in the Eastern Pacific Sector549

of the Southern Ocean to an uptake of up to 7 molCm−2yr−1 off the coast550

of Argentina. These overall higher values appear to be more in line with551

the majority of the OCMIP-2 ocean forward models (Watson and Orr, 2003)552

that are referred to in Gruber et al. (2009) with a decidedly higher uptake in553

Southern Ocean. The inverse calculations of Mikaloff Fletcher et al. (2006)554

find a strongly elevated uptake of anthropogenic CO2 south of 44◦S compared555

to results from model forward calculations. Other recent model results from556

the Community Climate System Model (CCSM-3) ocean Biogeochemical El-557

emental Cycle (BEC) model (Doney et al., 2009) and an isopycnic carbon558

cycle model (Assmann et al., 2010) show higher overall carbon uptake in559

the Southern Ocean compared to the Takahashi et al. (2009) climatology.560

Although spatial patterns and amplitudes vary from model to model, there561

is general agreement that the climatology underestimates the carbon sink in562

the Southern Ocean. The carbon uptake of the ECCO2-Darwin solutions in563

the Southern Ocean is on the high end compared to most other models and564

to the climatology, causing an overly pronounced amplitude of the seasonal565

cycle of the globally integrated CO2 flux.566

In other areas of the world ocean the ECCO2-Darwin solutions were more567

consistent with other studies with differences only in magnitudes. The equa-568

torial outgassing in the Eastern Pacific of run GREEN, for instance, has a569

shape similar to Doney et al. (2009), the values are closer to those shown570

by Assmann et al. (2010). The Northern North Pacific in our model does571

not show the outgassing in the annual mean that is found in the other two572
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models as well as in the climatology.573

As we constrained our model to achieve a “target” global carbon uptake574

of about 2.4 to 2.5 PgCyr−1, it needs to compensate for the too strong car-575

bon uptake in the Southern Ocean by weaker uptake or intensified outgassing576

in other regions. Additional Green’s functions sensitivity experiments would577

be required to “repair” these regional problems in representing air-sea CO2578

fluxes. We are in the process of diagnosing the underlying model physics and579

biology that cause this overly strong Southern Ocean uptake. Preliminary580

conclusions are that the model treatment of nutrient fields in combination581

with the parameterization of biological production is the most likely can-582

didate for these unrealistic model results. Additional work is underway to583

improve the model runs for future releases of CO2 flux products.584

This proof-of-concept study has shown that the Green’s function method585

can help adjust OBGCM model parameters and reduce model-data mis-586

match. The existing ECCO2-Darwin solution remains, however, preliminary587

in many ways. First, we only used a very small set of observational data588

to constrain of Green’s function solution. We are in the process of adding589

data constraints from observed, full-depth profiles profiles of DIC, alkalinity,590

and oxygen. Second, we are experimenting with the utilization of remotely-591

sensed products like chlorophyll, and other satellite-derived biological or bio-592

geochemical quantities to vastly expand the number of available constraints.593

Third, forward-model sensitivity experiments varying additional model pa-594

rameters are being carried out, which will lead to additional degrees of free-595

dom for the optimization. Fourth, we are exploring the creation of new sets596

of biogeochemical initial conditions, which will also expand this parameter597

space. One specific set of initial conditions that we are exploring is the con-598

struction of self-consistent data sets of DIC alkalinity, and density. We plan599

to enforce this self-consistency by assuming that the biogeochemical fields600

correlate with density and by estimating their variation through regression.601

This method has been used successfully in regional ocean modeling studies602

(Gruber et al., 2012; Lachkar and Gruber, 2012). Fifth, the model param-603

eterizations, especially with regard to the choice of phytoplankton species,604

are being evaluated in greater detail and adjusted to observations. Lastly,605

a major drawback of the Green’s function approach discussed herein is that606

computational cost increases linearly with the number of control parameters.607

Using this approach for detailed regional adjustments would be impractical.608

For this reason, we are also exploring the application of the adjoint method609

to the ECCO2-Darwin model. This strategy is similar to that adopted by the610
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ECCO2 project, whereby preliminary model adjustments were carried out us-611

ing a Green’s function approach while the adjoint method was subsequently612

used to further fine tune the solution. The cost of the adjoint method, while613

substantial, is largely independent from the number of control parameters.614

Using the adjoint method, it is possible to simultaneously adjust a large615

number of degrees of freedom. For example, in the ECCO2 physical-ocean616

optimizations, of order two billion model parameters have been adjusted us-617

ing the adjoint method. For ECCO2-Darwin, we plan to adjust the initial618

and surface biogeochemical boundary conditions in order to fit the observa-619

tions discussed above. All of the above improvements will lead to gradually620

more realistic air-sea CO2 estimates for the NASA CMS project as well as for621

the underlying physical, biological, and chemical processes that drive these622

air-sea fluxes.623
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Le Quéré, C., Takahashi, T., Buitenhuis, E.T., Rödenbeck, C., Sutherland,766

S.C., 2010. Impact of climate change and variability on the global oceanic767

sink of CO2. Global Biogeochemical Cycles 24, GB4007, 10 pp.768

Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R.J., Roy, T.,769

Sutherland, S.C., Sweeney, C., Tilbrook, B., 2012. The observed evolu-770

tion of oceanic pCO2 and its drivers over the last two decades. Global771

Biogeochemical Cycles 26, GB2021, 14 pp.772

25



Losch, M., Menemenlis, D., Campin, J., Heimbach, P., Hill, C., 2010. On773

the formulation of sea-ice models. part 1: Effects of different solver imple-774

mentations and parameterizations. Ocean Modelling 33, 129–144.775

Lovenduski, N.S., Gruber, N., Doney, S.C., Lima, I.D., 2007. Enhanced CO2776

outgassing in the Southern Ocean from a positive phase of the Southern777

Annular Mode. Global Biogeochem. Cycles 21, GB2026.778

Mahowald, N.M., Yoshioka, M., Collins, W.D., Conley, A.J., Fillmore, D.W.,779

Coleman, D.B., 2006. Climate response and radiative forcing from min-780

eral aerosols during the last glacial maximum, pre-industrial, current and781

doubled-carbon dioxide climates. Geophysical Research Letters 33, L20705,782

4 pp.783

Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C., 1997a. A finite-784

volume, incompressible navier stokes model for studies of the ocean on785

parallel computers. Journal of Geophysical Research 102, 5753–5766.786

Marshall, J., Hill, C., Perelman, L., Adcroft, A., 1997b. Hydrostatic, quasi-787

hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical788

Research 102, 5733–5752.789

McNeil, B.I., Matear, R.J., Key, R.M., Bullister, J.L., Sarmiento, J.L., 2003.790

Anthropogenic CO2 uptake by the ocean based on the global chlorofluoro-791

carbon data set. Science 299, 235–239.792

Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,793

Schodlock, M., Zhang, H., 2008. ECCO2: High resolution global ocean794

and sea ice data synthesis. Mercator Ocean Quarterly Newsletter 31, 13–795

21.796

Menemenlis, D., Fukumori, I., Lee, T., 2005a. Using green’s functions to797

calibrate an ocean general circulation model. Monthly Weather Review798

133, 1224–1240.799

Menemenlis, D., Hill, C., Adcrocft, A., Campin, J., Cheng, B., Ciotti, B.,800

Fukumori, I., Heimbach, P., Henze, C., Khl, A., Lee, T., Stammer, D.,801

Taft, J., Zhang, J., 2005b. NASA supercomputer improves prospects for802

ocean climate research. EOS 86, 89, 96.803

26



Menemenlis, D., Wunsch, C., 1997. Linearization of an oceanic general cir-804

culation model for data assimilation and climate studies. Journal of At-805

mospheric and Oceanic Technology 14, 1420–1443.806

Mikaloff Fletcher, S.E., Gruber, N., Jacobson, A.R., Doney, S.C., Dutkiewicz,807

S., Gerber, M., Follows, M., Joos, F., Lindsay, K., Menemenlis, D.,808

Mouchet, A., Müller, S.A., Sarmiento, J.L., 2006. Inverse estimates of809

anthropogenic CO2 uptake, transport, and storage by the ocean. Global810

Biogeochem. Cycles 20, GB2002.811

Mikaloff Fletcher, S.E., Gruber, N., Jacobson, A.R., Gloor, M., Doney, S.C.,812

Dutkiewicz, S., Gerber, M., Follows, M., Joos, F., Lindsay, K., Menemen-813

lis, D., Mouchet, A., Mller, S.A., Sarmiento, J.L., 2007. Inverse estimates814

of the oceanic sources and sinks of natural CO2 and the implied oceanic815

carbon transport. Global Biogeochem. Cycles 21, GB1010.816

Nassar, R., Jones, D.B.A., Suntharalingam, P., Chen, J.M., Andres, R.J.,817

Wecht, K.J., Yantosca, R.M., Kulawik, S.S., Bowman, K.W., Worden,818

J.R., Machida, T., Matsueda, H., 2010. Modeling global atmospheric CO2819

with improved emission inventories and CO2 production from the oxida-820

tion of other carbon species. Geoscientific Model Development 3, 689–716.821

Onogi, K., Tsuitsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hat-822

sushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K.,823

Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N.,824

Taira, R., 2007. The JRA-25 reanalysis. Journal of the Meteorological825

Society of Japan 85, 369–432.826

Pfeil, B., Olsen, A., Bakker, D., et al., 2012. A uniform, quality controlled,827

Surface Ocean CO2 Atlas (SOCAT). submitted to Earth System Science828

Data .829
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Table 2: Costs per observation (J/NOBS) and multiplication factors for initial condition
calculation for sensitivity and optimized model realizations. The “Linear Combination”
refers to a calculation of cost and fluxes simply based on a linear combination of the factors
from the sensitivity runs, calculated without actually performing a run.

Run GREEN
name J/NOBS Factors
GLODAP 1.2819 0.56404
CCSM 1.9681 0.16033
KS 1.0429 -0.077899
BLEND 1.6594 0.10418
NOBM 2.1856 0.24935
PISVEL 1.2892
PICPOC+ 1.0828
Lin.Combi. 0.8076
GREEN 0.8242
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Figure 1: Sequence of 6 daily means of sea-air CO2 gas fluxes in molCm−2yr−1 from the
“VERSION 1” simulation for January 4–9, 2009. Positive values denote upward fluxes,
i.e., outgassing, negative values oceanic uptake. Note the rotating propagation of high
and low values from west to east following the paths of atmospheric synoptic systems.

32



2009 2010
−8

−6

−4

−2

0

2

4

 

 

VERSION 1

GLODAP

NOBM

VERSION 2

Takahashi

Outgassing

Uptake

A
ir

-S
e

a
 C

O
2
 F

lu
x 

[P
g

C
/y

r]

Figure 2: Globally integrated sea-air CO2 fluxes for 2009 and 2010 in PgCyr−1 for four
different model realizations: Initial conditions taken from VERSION 1 (blue), NOBM
(green), GLODAP (baseline integration, red), GREEN/VERSION 2 (open black circles),
and the monthly means derived from Takahashi et al. (2009) (thick black lines).
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Figure 3: Annual mean of surface dissolved inorganic carbon (DIC) in mmolCm−2 for
2009 for model runs GLODAP and CCSM (top), BLEND and NOBM (middle), from the
Global Ocean Data Analysis Project data set (Key et al., 2004), and the optimized run
GREEN (bottom).

34



50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

10

8

6

4

2

0

-2

-4

-6

-8

-10

[molC/
m2/yr]

GLODAP                                              CCSM

BLEND                                                  NOBM

Takahashi                                          GREEN

Figure 4: Monthly mean CO2 gas fluxes in molCm−2yr−1 for July 2009 for model runs
GLODAP and CCSM (top), BLEND and NOBM (middle), from the Takahashi et al.
(2009) data set, and the optimized run GREEN (bottom). Positive values (red) are up-
ward.
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Figure 5: Monthly mean CO2 gas fluxes in molCm−2yr−1 for January 2010 for model
runs GLODAP and CCSM (top), BLEND and NOBM (middle), from the Takahashi et al.
(2009) data set, and the optimized run GREEN (bottom). Positive values (red) are up-
ward.
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Figure 6: Positions of surface pCO2 measurements during 2009 and 2010 from the Global
Surface pCO2 database at the Lamont-Doherty Earth Observatory (Takahashi et al.,
2011) represented by the blue dots and lines. Graph was created using ODV software
(http://odv.awi.de).
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Figure 7: Scatter plots for locations of pCO2 measurements as depicted in Fig.6, relating
model output (vertical axis) to observations (horizontal axis). Red dots and contour line
represent VERSION 1, black dots and contour line represent the optimized simulation
GREEN/VERSION 2. The contour lines denote regions where scatter plot density is
greater than 0.5 points per ppm2. The r2 coefficients for VERSIONS 1 and 2 are 0.05 and
0.09, the slopes are 0.24 and 0.28, respectively.
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Figure 8: Time-series of regionally integrated sea-air CO2 fluxes for 2010 from the opti-
mized model run (GREEN/VERSION 2) in PgCyr−1 (blue dots) and, for reference, the
monthly mean values from the Takahashi et al. (2009) climatology (red dots). Positive val-
ues (red) are upward. The black lines in the time-series plots denote “0”, values above this
line represent outgassing, below it ocean uptake; the scales are identical for all time-series
plots.
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Figure 9: Annual mean CO2 gas fluxes in molCm−2yr−1 for 2010 for the optimized model
run GREEN (top) and the Takahashi et al. (2009) data set. Positive values (red) are
upward.
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